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ABSTRACT  30 

 The El Niño-Southern Oscillation (ENSO) phenomenon impacts the global 31 

climate system, shifting weather pattern1,  affecting terrestrial and marine 32 

ecosystem2, and sea level distributions3.  While some studies link the interannual 33 

frequency of El Niño events to oscillatory ocean dynamics4,  others highlight the 34 

importance of random tropical5 , 6  and extratropical7 - 9  atmospheric perturbations 35 

in triggering El Niño events.  In winter/spring 2013/2014 these atmospheric 36 

triggers, also known as “precursors”, were very active, leading to strong 37 

westerly wind burst activity and subsurface warming (~6 oC) in the equatorial 38 

Pacific and record-breaking sea surface temperature anomalies in the North 39 

Pacific (~3 oC). The similarity of these conditions to the one observed in the 40 

winter/spring prior to the large 1997/98 El Niño (>3 oC), has raised concerns 41 

that a strong El Niño event is developing for the winter of 2014/20151 0.  Here, 42 

we develop a physically-based statistical ENSO model that combines both 43 

extratropical and tropical precursor dynamics. This model exhibits significant 44 

hindcast skill  in identifying the 1972/73, 1982/83, and 1997/98 El Niños as 45 

strong events (>2 oC), and relates them to years when both tropical and extra-46 

tropical triggers were active and strong in the preceding winter/early spring. 47 

Furthermore, stochastic simulations of the model are in agreement with 48 

observational statistics of El Niño return times, thus supporting the random 49 

event paradigm5 and challenging the idea that memory is retained from one 50 

event to the next. Applied to the current situation with several precursors active, 51 

the model predicts the development of a strong 2014/2015 El Niño event.   52 

53 
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 Previous studies document how tropical stochastic atmospheric forcing 54 

associated with equatorial westerly wind bursts (WWB) and the Madden-Julian 55 

oscillation can generate perturbations in the coupled ocean-atmosphere system 56 

of the tropical Pacific that generate El Niño events with lead times of about 57 

half-a-year or longer6 , 1 1 - 1 6 .  Additionally, more recent studies show that 58 

extratropical stochastic atmospheric variability in the North Pacific can also 59 

trigger tropical sea surface temperature anomalies8 , 9 , 1 7 - 1 9 .  The action of 60 

stochastic forcing for a stable ENSO system is more effective when the 61 

equatorial thermocline is charged4 – for example when the west Pacific 62 

thermocline is deeper than usual.  63 

 The spatial structure of the tropical and extra-tropical precursors of El 64 

Niño can be seen by regressing ocean temperatures and zonal surface winds over 65 

the period of Jan-Feb-Mar-Apr (JFMA) on the December Niño3 index, which 66 

represents the mature phase of El Niño (Figure 1). Along the equator the 67 

tropical precursor is characterized by positive anomalies in the statistics of 68 

westerly wind bursts (Figure 1a, orange arrow) and positive subsurface 69 

temperature anomalies in the thermocline2 0.  In the North Pacific, the precursor 70 

pattern exhibits a horseshoe shape in SST anomalies (SSTa) around the latitudes 71 

of the Hawaiian Islands7 , 1 8 , 2 0 .  Both the tropical and extra-tropical precursor 72 

patterns were observed in the JFMA prior to the strong 1997/98 and 1982/83 El 73 

Niño events (Figure 1c–f). A visual comparison of these precursor patterns with 74 

the anomalies observed during 2014 reveals an intriguing correspondence 75 

(Figure 1g and h). In March and April 2014 the tropical Pacific was 76 
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characterized by sustained westerly winds and anomalous subsurface warming 77 

(~6°C). In the North Pacific a large body of warm water with record-breaking 78 

temperatures of 3°C (ref. 21) formed a portion of the North Pacific SSTa 79 

precursor pattern. While the temperature and wind anomalies in JFMA of 2014 80 

closely resembled the El Niño precursors of the strong 1997/98 event, a more 81 

quantitative approach is needed to determine how and if this alignment of 82 

preconditioning factors translates into moderate or strong El Niño conditions. 83 

 To develop a simple statistical model of El Niño that takes into account the 84 

tropical and extra-tropical precursors, we need to define some physically-based 85 

indices of these two stochastic triggers. To start,  we note that the North Pacific 86 

SSTa precursor (Figure 1b), first isolated by (ref. 7) and commonly referred to 87 

as the ‘Meridional Mode’ (refs. 17,22), is excited by stochastic atmospheric 88 

variability in the extra-tropical trade winds8. Indeed, the spatial structure of the 89 

North Pacific meridional mode emerges statistically as the second dominant 90 

mode of co-variability between Pacific SSTa and sea level pressure anomalies 91 

(SLPa) (Figure 2) (see also methods). This co-variability mode is characterized 92 

by an atmospheric spatial pattern (Figure 2a, SLPa), an ocean pattern (Figure 2b 93 

SSTa) and a Principal Component (PC) timeseries. Further, the PC timeseries of 94 

this 2n d mode (Figure 2c, PCP R E C blue line) exhibits a consistent relationship 95 

with the 1s t  dominant mode, which tracks the El Niño Southern Oscillation 96 

(ENSO). Specifically the meridional mode leads the ENSO mode by ~12 months 97 

with significant correlations R=0.62. The SSTa signature of the meridional 98 

mode shows the typical horseshoe-warming pattern of the North Pacific 99 
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precursors (see Figure 1a), while the SLPa structure shows a strong pole of 100 

negative anomalies over the Hawai’i region.  101 

 Studies of the meridional mode have shown that stochastic variability in 102 

the Hawaiian SLPa pole excites thermodynamic coupling between the ocean and 103 

atmosphere (e.g. via the wind-evaporation-SST feedback2 3) generating SSTa in 104 

the tropical Pacific that energize the ENSO mode1 9.  Other studies have linked 105 

the Hawaiian SLPa pole to the generation of subsurface waves2 4 and the 106 

charging of equatorial heat content9 , 2 5 ,  both of which can also initiate ENSO 107 

responses .  Whereas the relative roles of these extra-tropical precursor dynamics 108 

need to be further explored, it  is clear that SLPa variability in the Hawaiian 109 

region [10oN-20oN; 160oW-140oW] (Figure 2a, blue rectangle) can be used to 110 

develop a simple index of the North Pacific precursor dynamics (SLPHI, see 111 

methods) (Figure 3a).  112 

 An index for the tropical Pacific stochastic precursor can be defined using 113 

the zonal wind anomalies and WWB statistics (WWBI), which are typically 114 

observed in the western equatorial Pacific 6-9 months prior to the development 115 

of a mature El Niño event. We construct an index of WWB activity using daily 116 

zonal wind data from 2oN–2oS, 140oE–160oE (Figure 3b,  see methods).    117 

 We develop a simple stochastic-trigger El Niño model (STEM) based on 118 

extra-tropical and tropical precursor index values in JFMA. The goal is to 119 

predict the amplitude of the mature phase of El Niño in December of the same 120 

year. In constructing the model, we also incorporate the fact that precursor 121 

dynamics translates into stronger El Niño events when the equatorial Pacific 122 
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heat content (equivalent to zonal mean thermocline depth) is recharged. We use 123 

the mean zonal depth anomaly of the 20 oC isotherm in April across the 124 

equatorial Pacific to identify years when the thermocline is charged. This 125 

equatorial thermocline index (Figure 3c, ETHI, see methods) has values of 0 126 

when the isotherm is shallower than usual (e.g. discharged state) and values of 1 127 

when the isotherm is deeper than usual (e.g. charged state). We now formalize 128 

the STEM model as 129 

 130 

Niño3(Dec) = [α  ×  SLPHI (JFM) + β  ×  WWBI (JFMA)] ×  [1+  γ  ×  ETHI]    Eq. 1 131 

 132 

where α  and β  are two parameters that represent the relative strength of the 133 

North Pacific (SLPHI) and tropical (WWBI) precursors, both normalized to unit 134 

variance. In this model the linear prediction based on the SLPHI and WWBI 135 

triggers is amplified by the factor [1+ γ  ×  ETHI], so that when the thermocline 136 

is charged the effect of the SLPHI and WWBI triggers is increased by a factor 137 

of γ .  This factor associated with the ETHI reflects the different linear 138 

amplification of ENSO when the triggers act on a favorably pre-conditioned 139 

state. However, in this model the preconditioned state alone cannot lead to an El 140 

Niño unless the triggers (e.g. SLPHI and WWBI) are active and of the correct 141 

sign. By considering the joint effect of the North Pacific and tropical 142 

precursors, this model formulation is an extension of previous linear statistical 143 

models2 6  of ENSO. 144 
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 We test the El Niño model (Eq. 1, STEM) by reconstructing the December 145 

values of the Niño3 index from 1958-2013. All available data for SLPHI (JFM), 146 

WWBI (JFMA) and ETHI (JFMA) from 1958-2013 (56 samples) are used in a 147 

nonlinear least square fitting procedure to estimate the model parameters 148 

(α=0.3, β=0.3 and γ=0.8, see methods). The model reconstruction of past Niño3 149 

December variability (Figure 3d) is highly correlated with the observed time 150 

series (R=0.71, see methods for significance test) and captures the amplitude of 151 

the three strongest El Niños in 1972/73, 1982/83 and 1997/98. Using the 2014 152 

index values for SLPHI, WWBI, and ETHI we use the model to forecast the 153 

December 2014 Niño3 SST anomalies. The model predicts a strong event with 154 

an amplitude comparable to that of the 1997/98 El Niño (~3˚C).  155 

 To assess whether this model is robust in forecasting Niño3 amplitudes, we 156 

determine the skill  of its hindcasts via a cross-validation procedure where a 157 

subset of the full 56 annual samples (e.g. 75%, or 42 years) is used to estimate 158 

the model parameters and hindcast the remaining independent samples (e.g. 159 

25%, or 14 years).  This procedure is repeated 200 times using random sets of 42 160 

years to predict the remaining 14 years. The resulting ensemble mean hindcast 161 

obtained using 75% of the data information (Figure 3e) shows significant skill  162 

in reconstructing the Niño3 (R=0.65) (see Figure S1a for errorbars).  In 163 

particular, the hindcasts identify all three years with temperature anomalies of > 164 

2˚C, corresponding to strong El Niño events in 1972/73, 1982/83, and 1997/98, 165 

and contain no false positives. When performing the hindcasts experiment we 166 

also forecast the values for 2014/15, which continue to show amplitudes > 2˚C 167 
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in the ensemble mean. Performing the ensemble mean hindcasts using only 50% 168 

of the samples (28/56) to predict the remaining 50% still  identifies the same 169 

strong events (Figure S1a) with similar overall skill  (R=0.64). However, when 170 

we use 25% of the samples (14/56) to generate the hindcast,  the outlier events 171 

are no longer captured (Figure S1a), except for the 2014 forecast.  In exploring 172 

the sensitivity of the model, we find that as we reduce the number of samples 173 

used in estimating the model parameters (e.g. 25% of samples), the nonlinear 174 

fitting procedure generates high uncertainty in estimating the amplification 175 

parameter γ .  This can be understood by considering that as fewer samples are 176 

used to construct the model, the chances of missing all three high amplitude El 177 

Niños are much higher. The higher amplitude fluctuations are necessary to 178 

correctly estimate the amplification. To demonstrate this,  we perform the cross-179 

validation analysis by prescribing the amplification factor to its fitted value (γ  180 

=0.8). In this case, the hindcasts using 75%, 50% or 25% of data information are 181 

robust in estimating the 1972/73, 1982/83, 1997/98 and 2014/15 events as 182 

outliers (Figure S1b). 183 

 To understand why the hindcast model has skill  in capturing the outlier El 184 

Niño events, we conduct an analysis of the tropical and extra-tropical trigger 185 

indices (e.g. WWBI and SLPHI) and their relationship to the thermocline 186 

preconditioning (ETHI) (Figure 3a, b and c; Figure S2 for a more detailed 187 

view). We find that all  the strong El Niño events (e.g. 1972/73, 1982/83, 188 

1997/98) occurred when both triggers and the preconditioning are active (e.g. 189 

charged state),  with at least two of the three factors being stronger than usual 190 
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(Figure S2). While the 1972/73 and 1997/98 events share similar characteristics 191 

in that the WWB were exceptionally strong and the thermocline subsurface 192 

anomalies large, the 1982/83 was dominated by the North Pacific precursor 193 

(Figure S2). Based on these results we suggest that when the tropical and extra-194 

tropical triggers coincide, and the equatorial thermocline is charged, the 195 

likelihood of an El Niño event peaking by the end of that year is very high. 196 

Furthermore, if one or more of the triggers is also particularly strong we find a 197 

strong El Niño in the observed record (Figure S2), with the obvious caveat of 198 

very small sample size. To the extent that this finding is robust,  the 199 

anomalously strong activity of both North Pacific and tropical precursors in 200 

2014 JFMA leads to STEM prediction for the development of a strong El Niño 201 

in the winter of 2014/15 (Figure 3). 202 

 The stochastic-trigger El Niño model (Eq. 1, STEM) presented in this study 203 

combines key mechanisms of tropical and extratropical stochastic forcing of El 204 

Niño, which when aligned appear to lead to the development of strong El Niño 205 

events. The assumptions underlying this model imply that El Niño events can be 206 

interpreted as a “series of events” (ref. 5) rather than a damped oscillation – 207 

that is there is no memory needed between events. Moreover, strong events are 208 

outliers only because they are triggered by unusually large initial noise events. 209 

To verify if this view is consistent with observations we explore the statistics of 210 

El Niño occurrence rate using a 50,000-year simulation of STEM. The 211 

simulation is executed by repeatedly generating 56-year-long random samples 212 

(with replacement) from the observed distribution of SLPHI, WWBI and ETHI 213 
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so that no correlation exists between the predictor indices. The resulting model 214 

statistics recover the observed occurrence rate of El Niño events within 215 

errorbars (Figure 4), suggesting that the stochastic paradigm (e.g.,  refs. 7,27,28) 216 

is a valid null-hypothesis for ENSO dynamics.  217 

 The model prediction of a strong 2014/15 event (Figure 3e) presents a clear 218 

test of the stochastic-trigger framework for ENSO dynamics. Still  there are 219 

several physical factors that this model does not include. For example, this 220 

model does not account for the precise timing of the triggers (e.g. WWB) in the 221 

spring preceding an El Niño, which may play a key role determining the 222 

amplitude of a strong El Niño. Furthermore, the STEM does not account for 223 

mean state dependencies, which may play an important role in the growing 224 

stages of El Niño events2 9 .  Dynamical forecast models of ENSO currently 225 

(April,  2014) predict  a weak to moderate El Niño event for the winter of 226 

2014/15 with a likelihood of over 65% (ref. 30).  However, if  our stochastic-227 

trigger El Niño model prediction turns out to be correct,  a reassessment of the 228 

representation of tropical and extratropical triggers in climate models may be 229 

warranted. 230 

 231 

 232 

       233 

  234 
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METHODS 235 

 We use monthly SLPa and dai ly  zonal  winds from the National  Centers  for  236 

Environmental  Predict ion/National  Center  for  Atmospheric  Research (NCEP/NCAR) 237 

Reanalysis  Project3 1  and SSTa from the National  Oceanic  and Atmospheric  238 

Administra t ion (NOAA) Extended Reconstruct ion sea surface temperatures  (NOAA 239 

ERv3; ref .  32)  f rom January 1950 to  Apri l  2014.  The thermocline temperature  data  of  240 

Figure 1  comes from the NCEP Global  Ocean Data  Assimilat ion (GODAS; ref .  33) .  241 

Monthly anomalies  are  computed for  each data  set  by removing the cl imatological  242 

monthly means.  243 

 To extract  the modes of  co-variabi l i ty  of  the  ocean and atmosphere  in  the  Pacif ic  244 

Ocean (Figure  2) ,  we use s imultaneous Empir ical  Orthogonal  Funct ions (EOFs)  of  the  245 

SLPa and SSTa f ie lds ,  referred to  here  as  SEOF. In  SEOFs,  two or  more data  f ie lds  246 

are  put  in to  one large space and t ime matr ix  that  is  subsequently  decomposed via  247 

singular  value decomposi t ion.  Pr ior  to  computing the SEOFs,  the  SSTa is normalized 248 

by the domain average s tandard deviat ion and the SLPa normalized along each la t i tude 249 

by the s tandard deviat ion at  that  la t i tude.  The data  are  smoothed in  t ime using a  4-250 

month running mean.  251 

 The wester ly  wind burst  index (WWBI) in  Figure 3  is  computed using the dai ly  252 

zonal  wind in  the box (2°S–2°N, 140°E–160°E).  We take a  cumulat ive sum of  a l l  253 

posi t ive  occurrences in  the  months of  JFMA from 1950–2014 to  generate  the  WWBI 254 

(JFMA).  The cumulat ive sum measures  the in tegrated effect  of  wester ly  wind bursts  255 

on the equatoria l  thermocline.   256 

 The equatoria l  thermocline index (ETHI)  is  computed using the European Centre  257 

for  Medium-Range Weather  Forecasts  (ECMWF) Ocean Reanalysis  System 4 (ORA-258 

S4; ref .  34) .  We take the zonal  mean of  the  isotherm 20°C depth anomaly in  the month 259 
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of Apri l .  When the zonal  mean is  larger  or  equal  to  zero we label  the  index as  charged 260 

(ETHI = 1) ,  when negat ive we label  as  neutral  or  discharged (ETHI = 0) .  Because the 261 

ORA-S4 data  for  Apri l  2014 was not  avai lable  we used the GODAS dataset  to  262 

determine that  the  thermocline was charged in  2014 (ETHI = 1) .   263 

 The North  Pacif ic  SLPa index over  Hawaii  (SLPHI)  is  computed by averaging the 264 

JFM SLPa over  the box in  Figure 2a (10°N–20°N, 160°W–140°W).  265 

 To compute the STEM model  parameters  (Eq.  1)  we used a  nonlinear  least  square  266 

f i t t ing procedure in  MATLAB (lsqcurvefi t .m) that  minimizes  the sum of  the squared 267 

differences between the data  and model  predict ion.  The optimal  parameter  set  is  268 

α=0.3,  β=0.3,  and γ=0.8.  A sensi t iv i ty  of  the model  reconstruct ion ski l l  to  the number 269 

of model  parameters  (Figure  S3)  shows that  inclusion of  a l l  parameters  improves the 270 

model  ski l l  and el iminates  fa lse  posi t ives  in  the reconstruct ion.   Cross  val idat ion is  271 

done in  the fol lowing manner:  one quarter  of  the  data  is  withheld to  serve as  272 

“independent”  data  for  hindcast  purposes;  years  are  chosen randomly.  The remaining 273 

“training” data  is  then centered ( i .e . ,  adjusted to  have zero mean) and s tandardized to  274 

have uni t  s tandard deviat ion;  the  parameters  α ,  β ,  and γ  are  then determined for  th is  275 

subsample.  The independent  data  are  then centered about  the  t ra ining data  sample 276 

means and are  normalized by the t ra ining data  sample s tandard deviat ion,  and f inal ly  277 

hindcasts  for  th is  period are  made using the parameters  f rom the t ra ining data .  This  278 

procedure is  repeated 200 t imes;  the  ensemble mean ski l l  of  the  hindcasts  is  d isplayed 279 

in  Figure 3 .  280 

 The s ignif icance of  the correlat ion coeff ic ients  is  es t imated from the Probabil i ty  281 

Distr ibut ion Functions (PDFs)  of  the  correla t ion coeff ic ient  of  two red-noise  t ime 282 

ser ies  with  the same auto regression coeff ic ients  as  es t imated from the or iginal  283 

signals .  The PDFs are  computed numerical ly  by generat ing 3000 real izat ions of  the  284 

correla t ion coeff ic ient  of  two random red-noise  t ime ser ies .   285 
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FIGURE LEGENDS  385 

1. Figure 1 |  Tropical and extra-tropical precursors of El Niño. a ,  386 

Regression of December Niño3 index with GODAS equatorial temperatures 387 

in April and WWB index derived from the NCEP zonal wind anomalies in 388 

JFMA between 2°S–2°N, 140°E–160°E (orange arrow, see methods for index 389 

definition). WWB index is in units of standard deviations. b ,  Regression of 390 

December Niño3 index with North Pacific SSTa in JFMA. c, e, g  April 391 

thermocline with the WWB anomalies in JFMA (orange arrows) for the years 392 

1982, 1997 and 2014. d, f,  h JFM North Pacific SSTa for the years 1982, 393 

1997 and 2014. 394 

2. Figure 2 |  The 2n d mode of ocean-atmosphere co-variability of the Pacific. 395 

a ,  Correlation of the mode in the SLPa. b ,  Regression of the mode with SSTa 396 

c ,  Temporal evolution of the principal component (blue line) leading the 397 

principal component of the 1s t  mode (ENSO) by 12 months. The correlation 398 

of 0.62 is significant (see methods). 399 

3. Figure 3 |  The stochastic-trigger El Niño model forecast. a ,  Timeseries of 400 

the North Pacific El Niño precursor (SLPHI, blue line) in JFM. b ,  Timeseries 401 

of the tropical El Niño precursor (WWBI, orange line) in JFMA. c ,  402 

Timeseries of the equatorial thermocline charge index (ETHI, green line). d ,  403 

Comparison of model reconstruction (black line) with the Niño3 Index (red 404 

line). e ,  Comparison of model ensemble forecast with Niño3 Index. The 405 
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forecasts ensemble was generated using random sets of 75% of the data to 406 

forecast the remaining 25%. 407 

4. Figure 4 |  Statistics of El Niño occurrence rate over a 56 year period. The 408 

y-axis is the percentage of events with a temperature higher than indicated by 409 

the respective x-axis value. (red dots) Observed December Niño3 index 410 

values. (black line) Statistics of the stochastic-trigger El Niño model (STEM) 411 

from a 50,000 year simulation, ±1 standard deviation (STD) (gray lines). The 412 

STEM model simulation is executed by randomly sampling the distribution of 413 

SLPHI, WWBI and ETHI so that no correlation exists between the predictor 414 

indices. The sampling is done so that on a 56 year period the same values of 415 

any index can be selected more than once.  416 

5. Supplemental Figure 1 |  Forecast Model sensitivity. a, Ensemble mean 417 

forecasts (black lines) using partial sets of information (e.g. 75%, 50% and 418 

25%) to estimate the model parameters. Error bars are in black brackets. The 419 

red curve is the Niño3 index in December. b ,  Same as panel a  but with a 420 

fixed amplification factor set to its optimal value (γ=0.8).  421 

6. Supplemental Figure 2 |  Precursor conditions prior to El Niños. a ,  422 

Timeseries of North Pacific Precursor SLPHI in JFM. b ,  Timeseries of 423 

tropical precursor WWBI in JFMA. c ,  Timeseries of zonal mean isotherm 20 424 

°C anomaly in April.  d ,  Hovmueller diagram of isotherm 20 °C anomaly 425 

along the equator. 426 
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7. Supplemental Figure 3 |  Sensitivity of STEM model to number of 427 

parameters. Top panels compare the model reconstruction (black line) using 428 

the set of parameters indicated above the frame with the Niño3 December 429 

values (red line). The significance test for the correlation is reported in the 430 

bottom panels with the probability distribution function from the Montecarlo 431 

test (see methods). 432 

8.  433 
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